
Deep Learning, Jumps, and Volatility Bursts*

Oksana Bashchenko†and Alexis Marchal‡

October 19, 2019

We develop a new method that detects jumps nonparametrically in financial time series
and significantly outperforms the current benchmark on simulated data. We use a long short-
term memory (LSTM) neural network that is trained on labelled data generated by a process
that experiences both jumps and volatility bursts. As a result, the network learns how to
disentangle the two. Then it is applied to out-of-sample simulated data and delivers results
that considerably differ from the benchmark: we obtain fewer spurious detection and identify
a larger number of true jumps. When applied to real data, our approach for jump screening
allows to extract a more precise signal about future volatility.

Keywords: Jumps, Volatility burst, High-frequency data, Deep learning, LSTM.

*We are thankful to Pierre Collin-Dufresne and Eric Jondeau for their helpful comments.
†UNIL and Swiss Finance Institute. Email: oksana.bashchenko@unil.ch
‡EPFL and Swiss Finance Institute. Email: alexis.marchal@epfl.ch

1

 Electronic copy available at: https://ssrn.com/abstract=3452933

1. INTRODUCTION

A popular stochastic process used to describe the evolution of prices is the so called jump-
diffusion model. Under this specification the price is modeled as combination of a drift, a
Brownian term and a jump process. We are interested in classifying returns into innovations
coming from the continuous Brownian or the discontinuous jump process. However, data
being inherently observed at discrete time points the decomposition is not straightforward.
At a given frequency, a large Brownian increment will be indistinguishable from a small size
jump. This is why jumps are often mistaken for bursts of volatility (i.e. volatility jumps) at
“reasonable” frequencies (around 5 minutes). One solution to this problem is to select the
highest frequency possible (use so called ultra high-frequency data). Given the continuity of
the Brownian component, diffusion-driven innovations will become smaller as the sampling
frequency increases, letting the true jumps emerge and making them easier to be detected.
The drawback of this approach is that for the highest frequencies the financial data is prone to
be contaminated with microstructure noise.

This paper presents a new method that disentangles jumps nonparametrically and is able
to separate them from bursts of volatility. Our approach detects the exact time of a jump
within a day and is therefore benchmarked to the fundamental test of Lee and Mykland (2008)
(LM henceforth). Our neural network largely outperforms the benchmark in presence of
jumps inside the volatility of the price process, achieving smaller type I and type II errors, and
performs equally good with continuous volatility. In order to achieve these results we use
a long short-term memory network. It is first trained on labelled data that were generated
from Monte-Carlo simulations. The network is then applied to classify every single return on
out-of-sample simulated data.

On real data, since labels are not available we assess the performance of our method via an
event study and a volatility forecasting exercise. Both of them confirm the higher accuracy of
our approach.

The rest of the paper is organized as follows. Section 2 describes the literature. Section 3
compares our method with the “classical” statistical tests and presents the main benchmark.
Section 4 explains the main idea behind the architecture and the training of the network.
Section 5 assesses the performance of our method on out-of-sample simulated data. Section 6
applies the algorithm to classify real data. Finally section 7 concludes.

2. LITERATURE REVIEW

The importance of differentiating between the two sources of risk, the jump component
and the continuous Brownian part, is outlined in Aït-Sahalia (2004). The existence of jumps
impacts option prices, risk management and asset allocation. Early papers dedicated to the
testing for jumps presence proposed a parametric approach using jump-diffusion models
with constant volatility. More recent papers have added a stochastic volatility component and
state-dependent jump parameters. The estimation for those models, however, is complex and
subject to model errors.

A separate branch of literature has focused on nonparametric methods working with intra-

2

 Electronic copy available at: https://ssrn.com/abstract=3452933

day data instead of the previously used low-frequency observations. Ole E Barndorff-Nielsen
and Shephard (2004) introduced the notion of bipower variation (BPV) which is a nonpara-
metric estimator of integrated variance that is consistent in presence of jumps. It established
the foundations for multiple nonparametric tests that were proposed afterwards.1 However
most of the tests only allow to assess the continuity of the sample path during a given time
period, they do not aim at detecting the exact jump times.

Lee and Mykland (2008) develop a model-free test that identifies the precise moment a jump
occurred within a day. For now, it (with some adjustments like in Boudt, Croux, and Laurent
(2011) that takes into account seasonality) remains the workhorse for this type of task (see
the comprehensive reviews of Theodosiou and Zikes (2012) and Mukherjee et al. (2019)).2

Dumitru and Urga (2012) offer a Monte-Carlo comparison of nine jump tests, concluding that
LM demonstrates the best performance. Consequently, we consider LM as the most widely
used benchmark to which we compare our results.

Lee and Mykland (2008) suggest to use data sampled not more frequently than at 2 minutes
since above that the data would likely be contaminated with market microstructure noise.
Christensen, R. C. Oomen, and Mark Podolskij (2014) is the first paper to test for the presence
of jumps exploiting tick-by-tick data. They conclude that jumps are in fact less common than
previously thought and that the tests at lower frequencies spuriously identify bursts of volatility
as jumps. We are able to confirm this finding, though working with 2 minutes frequency data
and avoiding microstructure noise filtering concerns.

Machine learning algorithms in finance are gaining an overwhelming popularity. Nonethe-
less, the exploration of jumps with those algorithms did not receive much attention. To the
best of our knowledge, the only two papers in this area are the following. Mäkinen et al. (2018)
use a recurrent neural network to predict future jumps in prices. However, the training of the
network takes as input the jumps already classified by the LM test on real data. They therefore
do not develop a new classification tool. The work of Au Yeung et al. (2019) aims to test for
jumps (defined by them as regime switching points) using machine learning. We differ from
them both in terms of research question and methodology. First, we are able to separate jumps
from volatility bursts, which is impossible in their framework. Second, unlike them we train
our network on simulated data, instead of using (necessarily misclassified) real data. This
allows for clear pattern recognition and thus better performance.

3. MACHINE LEARNING VS. STATISTICAL TEST

We start by motivating why the existing statistical methods might fail to classify jumps as such.
The most popular nonparametric individual jump test developed in Lee and Mykland (2008)

is based on the estimator of spot volatility, that is consistent in the presence of jumps. Unlike

1The first test using bipower variation was developed by Ole E Barndorff-Nielsen and Shephard (2006). A
generalized concept (multipower variation) is studied in Ole E. Barndorff-Nielsen, Shephard, and Winkel (2006)
Building on the previous findings, Corsi, Pirino, and Renò (2010) and Podolskij and Ziggel (2010) introduced
new jumps tests. Other well-known jump tests include Torben G Andersen, Dobrev, and Schaumburg (2009)
(using median realized volatility) and Jiang and R. C. A. Oomen (2007) (using swap variance).

2Torben G. Andersen, Bollerslev, and Dobrev (2007) also develop a jump test for each individual return similar to
Lee and Mykland (2008) but assume constant intraday volatility.

3

 Electronic copy available at: https://ssrn.com/abstract=3452933

the realized variance (RV), that measures the total variance of the process and is unable
to separate the continuous and jump variations, the bipower variation (BPV) is capable of
estimating solely the diffusion variance, ignoring variation of the jump part.3 Thus, it can be
used to construct a statistical test to detect jumps.

Loosely speaking, the LM test classifies a data point as a jump if the return size standardized
by estimation of the instantaneous volatility 4 is too high in absolute value. Though model-free,
this test requires the data generating process to satisfy some regularity conditions. The crucial
assumption is that the price is represented as a jump-diffusion process

d logSt =µt d t +σt dBt +Yt d qt (3.1)

with the drift µt and the diffusion coefficient σt not changing dramatically over a short period
of time.5 From now on we will use interchangeably the notions of diffusion coefficient and
(spot) volatility.

This assumption is the main weak point of the test. Its violation (for example, if σt itself
contains jumps) leads to a significant increase in the amount of spurious detection. Indeed,
the test classifies a return as a jump if the absolute value of the test statistic

L(i) =
log S(ti)

S(ti−1)

σ̂(ti)
(3.2)

is above some threshold. If volatility is not allowed to change dramatically, a high test statistic
would indeed reflect a jump. However, as soon as we allow for jumps in the volatility itself, it is
not the case anymore. σ̂ being computed over a moving window, if the diffusion coefficient
changes dramatically, the bipower variation will take time to incorporate this change. Keeping
this in mind, there are two different scenarios under which the LM test can fail. The first is a
positive jump in σt , that may generate a high purely diffusion-driven return. Together with
the bipower variation that did not have time to adjust for the new high level of volatility and
thus stays relatively low, this results in a high test statistic value. LM is unable to distinguish
between this scenario and a true jump in the price process, spuriously classifying both as
jumps. The second scenario is a sudden volatility decrease. The LM test might not be able
to find a real jump following this drop. For the same reason as above, the BPV is not able to
incorporate the change immediately. So it may stay higher than the real volatility, lowering the
test statistics and covering the true jump. This violation causes a significant misclassification

3The interested reader can find more details about volatility estimators in appendix B.
4Formally, the estimate of the spot volatility is a scaled version of the bipower variation and is computed as
σ̂2(ti) = 1

K−2
∑i−1

j=i−K+2 | logS(t j)/S(t j−1)|| logS(t j−1)/S(t j−2)| where K is the chosen window size and St is the

spot price of the stock at time t .
5Strictly speaking, the assumption from Lee and Mykland (2008) is ∀ε> 0

sup
i

sup
ti≤u≤ti+1

|µ(u)−µ(ti)| =Op (∆t
1
2 −ε),

sup
i

sup
ti≤u≤ti+1

|σ(u)−σ(ti)| =Op (∆t
1
2 −ε).

4

 Electronic copy available at: https://ssrn.com/abstract=3452933

rate. When σt contains jumps, the spurious detection rate of the LM test in simulated data is
above 150%.

Moreover, the assumption of no dramatic change in volatility is rejected by the real data. As
shown in Tauchen and Todorov (2008), volatility of the asset price necessarily contains jumps
and they happen much more frequently than just few times per year. So the core assumption
of the LM test contradicts the inherent feature of the market data.

Another concern comes from consistency of the bipower variation. As stated in Ole E
Barndorff-Nielsen and Shephard (2006), the BPV is a consistent estimator of the spot volatility
only in absence of leverage effect. The authors acknowledge that this is an unfortunate but
important restriction of their results, that confronts the stylized facts of equity data.

To overcome these significant limitations, we are the first to propose using an LSTM network
for jump identification and distinguishing them from discontinuous changes in volatility. The
main advantage of our approach is that we are not limited by any regularity conditions in
contrast to the classical statistical tests. Instead, we train the algorithm on data generated by
multiple processes and specifications of any desirable complexity, that incorporate stylized
facts about price characteristics, such as leverage effect, volatility clustering, volatility jumps
etc. As a result, we consistently outperform Lee and Mykland (2008) in the out-of-sample
analysis when simulated data is more realistic, and perform comparably to them when their
assumptions are met.

4. NETWORK ARCHITECTURE AND TRAINING

The long short-term memory network we choose for jump classification is a special type of
the recurrent neural network, that was introduced in Hochreiter and Schmidhuber (1997). By
construction, LSTM networks are well suited for remembering long-term dependencies and
thus for handling time-series data. We use a standard LSTM, motivated by the main finding
of Greff et al. (2016). They present the largest comparison study for different architectures of
LSTM networks and show that improvements of different modifications over the plain vanilla
LSTM are marginal. Our network consists of five layers: an input layer, a bidirectional LSTM
layer with 200 hidden neurons, a fully connected layer, a softmax layer, and a classification
output layer. An interested reader may refer to appendix A to find a brief intuition about neural
networks in general and LSTM in particular, as well as a detailed layers description.

Now that the structure of the network is chosen, it has to be trained to detect jumps. Our
methodology is conceptually simple. We first generate training data and since it is simulated,
we know exactly when a jump occurred. Then we label each return as “jump” or “no jump”
and train the network on them. Finally the network is ready to classify new time-series.

To create the training data, we simulate paths of the price process by discretizing the stochas-
tic differential equation (SDE) governing it. An advantage of our method is that since we do not
have to derive the distribution of a test statistic, there is no restriction on the data-generating
process. Therefore the training data set as a whole can be composed by multiple time-series
possibly generated from different processes of any complexity. Using a variety of them al-
lows the network to concentrate only on the specific feature (jump or not) of the data point,
preventing over-fitting. Another benefit of this method is that we can generate virtually an

5

 Electronic copy available at: https://ssrn.com/abstract=3452933

unlimited quantity of labelled data to train on, enhancing the network performance at no
cost6.

In order to incorporate many stylized facts of equity data, we have chosen the following
specification for the stock price St and its diffusion coefficient σt :

dSt = St (µt d t +σt dB1t +d J1t), (4.1)

dσt =α(σ−σt)d t + v
p
σt dB2t +d J2t . (4.2)

The price follows a jump-diffusion model and we introduce a rich structure for the stochastic
volatility which is governed by a mean-reverting process with jumps. The jump component
J2t introduces bursts of volatility, defined as a sudden change in the diffusion coefficient of the
price. This specification for the stochastic volatility allows us to incorporate the conventional
models with finite activity jumps and can serve (after suitable parameters adjustments) as
a decent approximation for infinitely active jump processes 7. The sources of volatility risk
B2t and J2t can be (negatively) correlated with B1t and J1t to incorporate the leverage effect.
In order to realistically reproduce real life patterns of securities, it is important to take all of
that into account. Using this framework the network will learn how to identify jumps and
disentangle them from bursts of volatility.

In order to simulate sample paths we need to select values for the parameters used in the
data-generating process(es). One idea could be to take real financial data, estimate those
parameters (for instance using maximum likelihood) and simulate our labelled data using
them. This procedure has two drawbacks. First, there is an estimation risk. Second, financial
markets are ever changing. This means that those parameters could have multiple regimes
and change over time. To overcome these difficulties we train the network on a whole set of
parameters. By constructing a realistic set, the network will learn what jumps look like under
various environment. This gives us hope that whatever regime the market is in, the network
will perform decently in the real data. In this way we also avoid re-training the network often.

Clearly, this method is not limited to using SDEs of the form of (4.1) and (4.2). The procedure
would work using any data-generating process to create labelled data and then following the
same steps.

5. PERFORMANCE ON SIMULATED DATA

In this section we assess the performance of our method using out-of-sample simulated data.
We start by generating new time-series, using parameters that the network was never trained
on. For every number reported in the tables below, the network was tested using 2000 Monte-
Carlo trials, each individual trial consisting of data generated at a 2 minutes frequency for 0.5
year.

First of all, we compare our network to the benchmark of Lee and Mykland (2008) when the
data satisfies their assumption about “local” changes in spot volatility. Table 5.1 presents the

6Apart from the necessary computational time.
7For further details see Cont and Tankov (2004).

6

 Electronic copy available at: https://ssrn.com/abstract=3452933

percentage of correct (% detection)8 and spurious (% spurious)9 classification of jumps by our
network and the benchmark. We see that we perform roughly as good as the benchmark in
this case. The good performance of LM is explained by the fact that all of their assumptions
are met. But as pointed out by Tauchen and Todorov (2008) this is not a realistic framework to
describe real world high-frequency equity data. Indeed, spot volatility should contain jumps.

Our network starts to significantly outperform in all dimensions (type I & type II errors) as
soon as we introduce jumps inside the diffusion coefficient. This violates the main assumption
of LM and it explains the drastically different results described in tables 5.2 and 5.3.

Network Lee & Mykland (benchmark)
% detection 88.32 94.15
% spurious 2.1 0.38

Table 5.1: This table compares the performance of our method versus the benchmark. “%de-
tection” stands for the percentage of correctly identified jumps. “%spurious” stands
for the percentage of spurious jumps identified. The simulated data does not contain
jumps inside the volatility (intensity of volatility jump arrival is 0).

Network Lee & Mykland (benchmark)
% detection 92.87 88.08
% spurious 17.52 200.75

Table 5.2: This table compares the performance of our method versus the benchmark. “%de-
tection” stands for the percentage of correctly identified jumps. “%spurious” stands
for the percentage of spurious jumps identified. The simulated data contains bursts
of volatility (intensity of volatility jump arrival is 65 per year).

Network Lee & Mykland (benchmark)
% detection 88.60 82.40
% spurious 25.96 147.61

Table 5.3: This table compares the performance of our method versus the benchmark. “%de-
tection” stands for the percentage of correctly identified jumps. “%spurious” stands
for the percentage of spurious jumps identified. The simulated data contains bursts
of volatility (intensity of volatility jump arrival is 6000 per year).

Furthermore, these results can be visualized in figure 5.1 which grasps the essence of this
paper. We plot one time-series of simulated returns (standardized by the bipower variation)
that are classified both by our network and the LM test. For readability, circles correspond to
returns coming purely from the diffusion component and stars are returns truly containing a

8% detection = # of correct jump detection
total # of true jumps .

9% spurious = # of no jumps, classified as jumps
total # of true jumps .

7

 Electronic copy available at: https://ssrn.com/abstract=3452933

jump. We describe the data points by discussing four categories: (i) both methods agree and
are correct, (ii) both methods agree and are mistaken, (iii) LM outperforms the network, and
(iv) the network outperforms the LM test.

(i) The major part of the returns are small (in absolute value) and come from the diffusion
component. Those are correctly classified as “no jump” by both methods (blue circles). Simi-
larly, the isolated large (in absolute value) returns are correctly classified as a jump by both
tests (green stars).

(ii) There are a few true jumps that both methods fail to recognize as such (black stars). The
reason is that those jumps are small in magnitude comparatively to the Brownian term. In the
same spirit, both tests wrongly identify the data points as being a jump (green circles) when
the diffusion component realization is unusually high.

The most interesting part of the analysis is where the methods disagree.
(iii) There is no true jump correctly classified only by the LM test. This is in line with our

results from tables 5.2 and 5.3 that display a higher detection rate for our neural network.
However, our method is not perfect: rarely, it is the only one to mistakenly categorize a point
as a jump (yellow circles).

(iv) Since this plot depicts the returns standardized by the BPV, the LM test can be imagined
as two horizontal lines symmetrically placed around zero on this plane. Every return between
them is classified as no jump, while any outside of this region is identified as a jump. As we
see, such approach results in significant amount of misidentification. This happens because
the assumption of local changes in volatility (fundamental for the LM test) is violated now.
There are two cases where our method outperforms the benchmark. First when a positive
jump inside the spot volatility σt occurs. In this case, larger diffusion increments coupled
with the bipower variation that does not adjust fast enough result in a test statistic that is too
high and spurious jump identification by LM (red circles). This category is overwhelmingly
big, in line with results presented in tables 5.2 and 5.3. The LM test spuriously identifies as a
jump more points than the entire amount of true jumps in the sample. The second scenario is
when σt experiences a fast drop. The BPV might stay too high, lowering the test statistic and
masking the true jump (yellow stars).

To ensure the robustness of our method, we test the algorithm on a different data-generating
model. Before, we conducted the out-of-sample analysis by solely changing the parameters.
From now on we also modify the structure of the SDEs. The price St contains two Brownian
terms and a jump component. On top of that, all the randomness in the diffusion coefficients
is created by pure jump processes (as suggested by Tauchen and Todorov (2008)). The model
is described by the following system of SDEs

dSt = St (µt d t +σ1t dB1t +σ2t dB2t +d J1t), (5.1)

dσ1t =α1(σ1 −σ1t)d t +d J2t , (5.2)

dσ2t =α2(σ2 −σ2t)d t +d J3t . (5.3)

The results stemming from this specification are displayed in table 5.4. As before our method
outperforms the benchmark.

8

 Electronic copy available at: https://ssrn.com/abstract=3452933

Network Lee & Mykland (benchmark)
% detection 86.05 80.04
% spurious 14.96 59.33

Table 5.4: This table compares the performance of our method versus the benchmark. “%de-
tection” stands for the percentage of correctly identified jumps. “%spurious” stands
for the percentage of spurious jumps identified. The simulated data is governed by
the model (5.1)-(5.3).

As a final robustness check, we simulate the price by using (5.1) but the paths for σ1t and σ2t

are obtained from market data. This is a way to make our simulations closer to reality while
being able to assess the performance of the test. For volatility estimation we decide not to use
the bipower variation. The reason is that eliminating the impact of jumps requires the time
window K to be large enough, over-smoothing volatility. Instead, we first take a time-series
of real returns from which we remove the jumps detected by our network. Then the spot
volatility is estimated using the realized volatility computed over a shorter window. Applying
this procedure to two different stocks gives us two paths that are used as

(
σ1t

)T
t=0 and

(
σ2t

)T
t=0.

This implies that when performing the 2000 trials, the paths of the diffusion coefficients
stay fixed. Also, this technique is subject to errors both in jumps detection and in volatility
estimation. However, we believe that this approach provides a meaningful complementary
robustness check. The results are presented in table 5.5 and are in line with all previous
findings.

Network Lee & Mykland (benchmark)
% detection 88.63 81.15
% spurious 3.92 64.43

Table 5.5: This table compares the performance of our method versus the benchmark. “%de-
tection” stands for the percentage of correctly identified jumps. “%spurious” stands
for the percentage of spurious jumps identified. The stock price comes from the
process (5.1) but the paths for σ1t and σ2t are estimated from real data.

9

 Electronic copy available at: https://ssrn.com/abstract=3452933

F
ig

u
re

5.
1:

Si
m

u
la

te
d

d
at

a.
R

et
u

rn
s

ar
e

st
an

d
ar

d
iz

ed
by

th
e

b
ip

ow
er

va
ri

at
io

n
an

d
sa

m
p

le
d

at
2

m
in

fr
eq

u
en

cy
fo

r
0.

5
ye

ar
.T

h
e

sp
o

t
vo

la
ti

li
ty

it
se

lf
ju

m
p

s
fr

eq
u

en
tl

y.

10

 Electronic copy available at: https://ssrn.com/abstract=3452933

6. APPLICATION TO REAL DATA

In this section we perform jump classification on real data sampled at 2 minutes. Here
clearly we cannot exactly assess the performance of our test comparatively to the benchmark.
However we provide evidence supporting our method through an event study and volatility
forecasting.

As a first step we propose a visual inspection of classified returns of one US company
and compare with the LM test. Figure 6.1 displays the returns of American International
Group (AIG) standardized by the BPV. Similarly to simulated data, the core of the series that is
constituted by a multitude of returns close to zero is classified as coming from the continuous
Brownian by both methods (in blue). The isolated large (in absolute value) returns are also
classified by both our network and LM as jumps (in green).

In this figure, some jumps identified only by LM (in red) cluster in time. The fact that a jump
in the price is followed by other jumps over a very short period of time (usually within few
minutes) goes against the very definition of what constitutes a jump in equity data. Finite
activity jumps should be rare events and the probability of multiple occurring over a short
time span is negligible. For this reason we believe that many of those jumps classified only by
LM are in fact coming from the Brownian component during a burst of volatility, explaining
their size. Also, these very points (in red) happen to locate close to a group of returns similar in
magnitude, but identified as no jump. This suggests that the whole cluster of returns represents
a volatility burst. It is unlikely to have a jump-generated return, that has the same magnitude
as its diffusion-generated neighbors, so probably it is a misclassification. This finding matches
the results of Christensen, R. C. Oomen, and Mark Podolskij (2014). The other dimension
in which we differ are the jumps classified only by our network while they are considered as
continuous returns by LM (in yellow). They happen after a sharp drop of spot volatility, hence
the LM test appears to miss those jumps due to the reasons we explained in the previous
section.

6.1. EVENT STUDY

In a second step, we analyze the data points where our network and the LM test disagree
and convey an event study to support the verdict of one of the two methods. This subsection
presents an example.

On September, 19, 2008, the AIG stock experienced a log-return of 12.18% within 2 minutes.
This event can be seen on figure 6.1 in the center of the orange circle. In order to have a more
granular view of this event, figure 6.2 displays the stock price of AIG for the first half of this
day. The price changed from $2.78 at 10h17am to $3.14 at 10h19am. Our network classifies
this return as a jump, while the LM test disagrees with us and attributes this change to the
continuous term. Why do we think that this return was indeed caused by the jump?

11

 Electronic copy available at: https://ssrn.com/abstract=3452933

F
ig

u
re

6.
1:

R
et

u
rn

s
o

fA
m

er
ic

an
In

te
rn

at
io

n
al

G
ro

u
p

(A
IG

)
st

an
d

ar
d

iz
ed

b
y

th
e

b
ip

ow
er

va
ri

at
io

n
at

2
m

in
fr

eq
u

en
cy

.R
eg

ar
d

in
g

th
e

le
ge

n
d

:“
N

o
ju

m
p

b
o

th
”

m
ea

n
s

th
at

n
o

n
e

o
ft

h
e

m
et

h
o

d
s

d
et

ec
te

d
a

ju
m

p
,“

Ju
m

p
L

M
”

m
ea

n
s

th
at

a
ju

m
p

w
as

d
et

ec
te

d
o

n
ly

b
y

th
e

te
st

o
fL

M
,“

Ju
m

p
N

N
”

m
ea

n
s

th
at

a
ju

m
p

w
as

d
et

ec
te

d
o

n
ly

b
y

o
u

r
n

et
w

o
rk

,a
n

d
fi

n
al

ly
“J

u
m

p
b

o
th

”
m

ea
n

s
th

at
b

o
th

LM
an

d
th

e
n

et
w

o
rk

ag
re

e
an

d
d

et
ec

ta
ju

m
p.

12

 Electronic copy available at: https://ssrn.com/abstract=3452933

Figure 6.2: AIG stock price in the morning of September 19, 2008 sampled at a 2 minutes
frequency.

The week of September 15, 2008 - September 19, 2008 was in the heart of the financial crisis.
On Monday Lehman Brothers filed for bankruptcy, constituting the largest one in US history.
That was a period of market instability, featuring high volatility. But on Friday September 19,
at 10:05, the Treasury Secretary Henry Paulson announced a number of actions that the state
would take to stabilize the financial system. In particular, the money market funds guarantee
program was announced. This was perceived as positive news, and pushed markets up. The
length on the Secretary’s talk was approximately 9 minutes, and it ended at 10h14am. Then,
three minutes later, we observe a sudden and big upward change in the price of AIG. Most
interestingly, after this big change a calm period begins. Volatility decreases significantly and
price balances on the relatively stable level. This refutes the hypothesis of the abovementioned
return being generated by the diffusion part and supports the jump nature of this return. This
is an example of our previous discussion about the failure of the LM test. In this case we
suppose that a sudden drop in volatility violates the LM assumption and thus does not allow
their test to detect the actual jump, causing a misclassification.

6.2. VOLATILITY FORECASTING

Finally, we propose an exercise of volatility prediction. The intuition for this exercise is as
follows. It is known that the HAR-RV (heterogeneous autoregressive model of realized volatility)
of Corsi (2009) does a decent job in forecasting the variance. Torben G. Andersen, Bollerslev,
and Diebold (2007) have developed a HAR-RV-CJ model that disentangles RV into a continuous
(C) and jump (J) components and showed that it may improve the prediction. Thus a more

13

 Electronic copy available at: https://ssrn.com/abstract=3452933

accurate jump detection method allows for a better modelling of these two components and
in turn would be reflected in an increased performance. This allows us to benchmark our
method to others.

The first step is to construct an estimate of the daily, weekly and monthly total volatility
using high-frequency data. For this purpose we use the realized variance and denote the daily
component by RVd

t (see appendix B for the formula). The weekly volatility is simply an average
of the daily quantities over five days

RVw
t = 1

5

(
RVd

t +RVd
t−1d + ...+RVd

t−4d

)
. (6.1)

The monthly volatility RVm
t is constructed in a similar fashion using twenty two days. The

plain vanilla regression (in spirit of Corsi (2009)) to forecast one day/week/month ahead is

RV f
t+ f =α f +βd

f RVd
t +βw

f RVw
t +βm

f RVm
t +errort+ f (PV)

where f ∈ {d , w,m}.
In order to split RV into a continuous variance C and a jump variance J we compare three

methods. The first one simply uses the bipower variation to estimate C and then computes
the jump volatility as Jt = RVt −Ct . We call this method BPV . A second approach (LM)
is to use the jumps detected by the LM test and remove them from the time-series of stock
returns. Assuming the method works perfectly, we obtain a series of returns generated by a
pure diffusion process. Then we can compute the realized variance of this newly created series
of returns in order to obtain C . A third method (NN) is to perform the same steps but using
our neural network instead. Of course the last two methods produce different results since LM
and NN disagree about certain jumps.

For each of the three approaches we run the following regression

RV f
t+ f =α f ,i+βd ,C

f ,i Cd
t ,i +βw,C

f ,i Cw
t ,i +βm,C

f ,i Cm
t ,i (6.2)

βd ,J
f ,i Jd

t ,i +βw,J
f ,i Jw

t ,i +βm,J
f ,i Jm

t ,i +errort+ f ,

i ∈ {BPV ,LM,NN }. In order to prevent over-fitting we set the coefficients in front of the
jump variance to zero.10

The comparison of the out-of-sample forecasting performance of the different methods is
displayed in table 6.1. We conduct the analysis on the Dow Jones constituents (excluding the
financial firms) and the index-tracking ETF (DIA) from 2006 to 2008 included, observed at a
2 minutes frequency. The reported results are the cross-sectional average of the forecasting
performance for each method. We can see that at all horizons the neural network reaches
the lowest root mean-square error (RMSE) and the highest R2, beating all the other methods.

10Adding the jump variance terms J f , f ∈ {d , w,m} improves the in-sample performance but in general deteriorates
the out-of-sample results. Jump coefficients being typically insignificant we have decided to remove them.

14

 Electronic copy available at: https://ssrn.com/abstract=3452933

The differences in performance between the methods might seem small at first glance but we
have to remember that jumps are actually rare events and account only for a small portion
of the returns. Moreover, the two methods LM and NN only disagree on a strict subset of
the already small number of jumps. It is therefore normal to obtain performance metrics that
are relatively close to one another. Yet, the higher performance of the network hints at the
fact that even on real data it is better able to detect jumps and extract a more precise signal of
future total volatility.

Daily Weekly Monthly
R2 RMSE R2 RMSE R2 RMSE

PV 62,41 1,12 69,83 0,88 64,56 0,89
BPV 64,69 1,09 71,75 0,85 65,78 0,88
LM 64,98 1,08 72,42 0,84 65,72 0,88
NN 65,38 1,07 72,53 0,83 65,99 0,87

Table 6.1: Comparison of the out-of-sample performance for one day ahead daily, one week
ahead weekly and one month ahead monthly volatility forecast by four methods
on the Dow Jones stocks (financial firms excluded) from 2006 to 2008. All the
regressions are reestimated daily. R2 and root mean square error (RMSE) are used as
performance metrics.

7. CONCLUSION

We present a new method that uses an LSTM neural network to detect jumps nonparametri-
cally in high-frequency data. The network is able to distinguish between jumps and bursts
of volatility without using ultra high-frequency data, avoiding microstructure noise. The
network is trained on labelled data generated at virtually zero cost using Monte-Carlo. Using
out-of-sample simulated data, our approach significantly outperforms the benchmark of Lee
and Mykland (2008) in realistic market conditions (i.e. in presence of jumps inside the spot
volatility of the price process). On real data, we provide supportive evidence of the higher ac-
curacy in jump detection of the neural network through an event study and improved volatility
forecasts.

15

 Electronic copy available at: https://ssrn.com/abstract=3452933

REFERENCES

Aït-Sahalia, Yacine (2004). “Disentangling diffusion from jumps”. Journal of Financial Eco-
nomics 74.3, pp. 487–528.

Andersen, Torben G., Tim Bollerslev, and Francis X. Diebold (2007). “Roughing it up: Including
jump components in the measurement, modeling, and forecasting of return volatility”.
Review of Economics and Statistics 89.4, pp. 701–720.

Andersen, Torben G., Tim Bollerslev, and Dobrislav Dobrev (2007). “No-arbitrage semi-martingale
restrictions for continuous-time volatility models subject to leverage effects, jumps and
i.i.d. noise: Theory and testable distributional implications”. Journal of Econometrics 138.1,
pp. 125–180.

Andersen, Torben G, Dobrislav Dobrev, and Ernst Schaumburg (2009). “Jump-robust volatility
estimation using nearest neighbor truncation”.

Au Yeung, Jay F.K. et al. (2019). “Jump detection in financial time series using machine learning
algorithms”. Soft Computing.

Barndorff-Nielsen, Ole E and Neil Shephard (2004). “Power and Bipower Variation with Stochas-
tic Volatility and Jumps”. Journal of Financial Econometrics 2.1, pp. 1–37.

– (2006). “Econometrics of testing for jumps in financial economics using bipower variation”.
Journal of Financial Econometrics 4.1, pp. 1–30.

Barndorff-Nielsen, Ole E., Neil Shephard, and Matthias Winkel (2006). “Limit theorems for
multipower variation in the presence of jumps”. Stochastic Processes and their Applications
116.5, pp. 796–806.

Boudt, Kris, Christophe Croux, and Sébastien Laurent (2011). “Robust estimation of intraweek
periodicity in volatility and jump detection”. Journal of Empirical Finance 18.2, pp. 353–367.

Christensen, Kim, Roel C.A. Oomen, and Mark Podolskij (2014). “Fact or friction: Jumps at
ultra high frequency”. Journal of Financial Economics 114.3, pp. 576–599.

Cont, Rama and Peter Tankov (2004). Financial Modelling With Jump Processes. Chapman &
Hall/CRC Financial Mathematics Series.

Corsi, Fulvio (2009). “A simple approximate long-memory model of realized volatility”. Journal
of Financial Econometrics 7.2, pp. 174–196.

Corsi, Fulvio, Davide Pirino, and Roberto Renò (2010). “Threshold bipower variation and the
impact of jumps on volatility forecasting”. Journal of Econometrics 159.2, pp. 276–288.

Dumitru, Ana Maria and Giovanni Urga (2012). “Identifying jumps in financial assets: A com-
parison between nonparametric jump tests”. Journal of Business and Economic Statistics
30.2, pp. 242–255.

Greff, Klaus et al. (2016). “LSTM: A Search Space Odyssey”. Transactions on Neural Networks
and Learning Systems.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. Neural Com-
putation 9(8), pp. 1735–1780.

Jiang, George J and Roel C A Oomen (2007). “Testing for Jumps When Asset Prices are Observed
with Noise - A “Swap Variance” Approach”.

Lee, Suzanne S. and Per A. Mykland (2008). “Jumps in financial markets: A new nonparametric
test and jump dynamics”. Review of Financial Studies 21.6, pp. 2535–2563.

16

 Electronic copy available at: https://ssrn.com/abstract=3452933

Mäkinen, Milla et al. (2018). “Forecasting of Jump Arrivals in Stock Prices: New Attention-based
Network Architecture using Limit Order Book Data”.

Mukherjee, Arpita et al. (2019). “Financial econometrics and big data: A survey of volatility
estimators and tests for the presence of jumps and co-jumps”.

Podolskij, M and D. Ziggel (2010). “New tests for jumps in semimartingale models”. Statistical
Inference for Stochastic Processes 13.1, pp. 15–41.

Tauchen, George and Viktor Todorov (2008). “Volatility Jumps”.
Theodosiou, Marina G and Filip Zikes (2012). “A Comprehensive Comparison of Nonparamet-

ric Tests for Jumps in Asset Prices”. SSRN Electronic Journal 44.0.

17

 Electronic copy available at: https://ssrn.com/abstract=3452933

APPENDIX A

This section provides a brief intuition about neural networks and an overview of the structure
of the specific network we use.

Artificial Neural Networks (ANN or simply NN) are for now one of the most powerful and
widely used tool to tackle complex machine learning problems. In essence, every NN is a
sequence of non-linear data transformations. A network consists of units called neurons,
which are hierarchically organized into layers. Each neuron in the network is associated with
its own weighting vector W and bias b, which are the parameters that will be updated during
the learning process. The neuron performs an affine data transformation (multiplying the
input by its weighting vector and adding the bias), and then applies a predetermined activation
function11 to the result. All neurons of layer l take as input the previous l −1 layer’s output,
and in turn pass their own output as an input for the following layer l +1. Neurons within one
layer use the same activation function and operate independently from each other. Formally,
the output of neuron number k in layer l is

a[l]
k =φ(W [l]′

k x +b[l]
k) (A.1)

whereφ is the activation function that is applied elementwise and x is the output of all neurons
of the previous layer. Passing the data through the network and obtaining the output is called
forward propagation.

The goal of network learning is to find parameter values that will result in a minimal error
between the network output and the desired output (in our case this is the labelled output). It
is done iteratively. First, the input data is fed to the network and the output is obtained. Then
an error function is computed, that shows how far is the network result from the target. The
chosen activation functions being piecewise differentiable, a gradient descend method is used
to update the parameters. This process is called backpropagation. Repeating forward and
backpropagation allows to adjust parameters in the way that results in increasing network
performance (i.e. lower error function).

An example of a simple network is the logit regression. It has two layers:12 The first one is the
input layer, with the amount of neurons being equal to the number of regressors. The second
layer is the output layer with one single neuron, that has the sigmoid activation function
σ(x) = 1

1+e−x . Parameters of this neuron are just the regression coefficients. This network has
no hidden layers (that is, layers other than input and output). Networks that have one or no
hidden layers are called shallow, while networks with multiple hidden layers are called deep.
Figure A.1 provides a visualization of a deep neural network.

11Theoretically, any function can be used as an activation. However, a piecewise differentiable function is usually
preferred in practice.

12Due to conventions, it is called a one layer network since the input layer is usually not counted.

18

 Electronic copy available at: https://ssrn.com/abstract=3452933

Figure A.1: Deep Neural Network

The drawback of using a general network as described above is that it is incapable of learning
temporal dependencies from time-series data. To address this task a recurrent neural network
(RNN) could be used. The recursive layer of such network has an analogue of memory, called
hidden state. It carries the information from the previous time step and is used as additional
input for the recursive layer. Formally, it processes time t observation according to

ht =φ(W xt +Uht−1 +b) (A.2)

where xt is the input, ht−1 is the hidden state from the previous time step and W and U are the
corresponding weighting matrix for the input and hidden state respectively. ht is the updated
hidden state, that is kept to treat the next observation t +1 and also it serves as the output.
Two major issues arise for such plain vanilla RNN. First, the memory is short-lived and not
elective. There is no way to keep for a long time the important information and quickly forget
the irrelevant one. The second issue, technical in nature, is the exploding/vanishing gradient.
13

Long short-term memory network (LSTM) is a specific type of RNN, that mitigates both of
these problems. An LSTM block has two states. One state corresponds to the working memory
and is analogous to the RNN hidden state ht . It is also the output of a block to the following
network layer. The second one is the long-term memory mechanism, called the cell state and

13Intuitively, each RNN could be unfolded into a non-recurrent network of the same length than the data series.
During backpropagation, the derivative of the error function with respect to weights should be computed for
every node. Due to the chain rule, it results in iterative multiplication and thus the derivative may become
unstable.

19

 Electronic copy available at: https://ssrn.com/abstract=3452933

denoted by ct . The block also has three gates (non-linear input transformation), that regulate
the information flow inside:

(r) The forget/remember gate coordinates which information from the long-term memory
should be kept and which one should be discarded.

(s) The input gate (or sometimes called save gate) decides which information from the
input should be saved in the long-term memory.

(f) The output gate (sometimes called focus) controls the updates of the hidden state.

Each gate is in essence just a shallow neural network itself. The parameters associated with the
remember, save, focus gates respectively are given by the triplet (Wi ,Ui ,bi) where i ∈ {r, s, f }.

To better grasp the intuition, let us walk along the transformation of the input xt within
one LSTM block. From the previous time step the cell state ct−1 and the hidden state ht−1 are
passed.

1. This first step is dedicated to learning which information of the existing long-term
memory will be kept or forgotten. To do so, the remember gate (r) uses xt and the
working memory ht−1 to obtain the “remember” vector rt that is computed as

rt =σ(Wr xt +Ur ht−1 +br). (A.3)

Here σ defines the sigmoid activation function, that ensures values of the remember
vector are between 0 (fully forget) and 1 (fully remember). rt will later be elementwise
multiplied by ct−1 to keep only the relevant information.

2. Now we decide which information should potentially be added to the long-term memory.
The candidate is formed as

c ′t = tanh(Wl xt +Ul ht−1 +bl) (A.4)

where (Wl ,Ul ,bl) are the parameters of the long-term memory candidate formation.

3. Before it enters the long-term memory, the save gate (s) decides which part of this
candidate is worth saving by computing the following quantity

st =σ(Ws xt +Usht−1 +bs). (A.5)

As before, the activation function here is sigmoid, that ensures values between 0 and 1
and thus by elementwise multiplication allows to regulate the information flow.

4. We are ready to update the long-term memory by performing the following operation

ct = ct−1 ⊗ rt + st ⊗ c ′t (A.6)

where ⊗ denotes an elementwise multiplication. The updated value of the long-term
memory ct consists of the information remembered from the past (first term) and the
newly added component (second term).

20

 Electronic copy available at: https://ssrn.com/abstract=3452933

5. Finally, we can update the hidden state ht . The focus gate (f) allows to concentrate on
the relevant information from the long-term memory. This is done as follow

ft =σ(W f xt +U f ht−1 +b f), (A.7)

ht = ft ⊗ tanh(ct). (A.8)

The figure A.2 allows to represent those transformations visually.

Figure A.2: Transformation of the input inside the LSTM unit

Now that we have a brief intuition about how the LSTM block works, this section concludes
with a brief description of our neural network architecture. The network consists of the
following layers:

1. Sequence input layer, that inputs the time-series into the network.

2. Bidirectional LSTM layer with 200 neurons. This layer is learning long-term dependen-
cies from the complete sequence

• An LSTM layer, as discussed before, allows the network to keep track of the valuable
information, that was encountered long time ago, forgetting the more recent but
unimportant.

• A bidirectional layer duplicates the LSTM layer, creating two such layers one after
the other. The first receives the actual time-series as an input, while the second one
receives the reversed copy of the data. This allows the network to use the whole

21

 Electronic copy available at: https://ssrn.com/abstract=3452933

dataset to classify points, including information that comes from the moments
after.

3. Fully connected layer with two neurons, both of them being connected to all the neurons
from the previous layer. Each neuron multiplies the input by the weight vector and adds
the bias. This layer assembles all the features learned by the bidirectional LSTM layer to
classify points into “jump”/“no jump” categories.

4. Softmax layer with two neurons, that applies softmax function 14 to the inputs, comput-
ing the probabilities of the point belonging to one of the two categories. If the outputs
of the previous layer’s two neurons are s1 and s2, the neurons of this layer will compute
pi = e si∑2

j=1 e s j for i = 1,2.

5. Classification output layer, that computes the cross-entropy15 for the classification
problem for multiple non-intersecting classes in order to construct the error function
(that will be minimized).

Schematic representation of our network can be found on the figure A.3.

Figure A.3: Network used in this paper

14The softmax function (also called normalized exponential) takes as input a real vector and transforms it into
a probability distribution. Formally, for a vector v ∈ Rn , the softmax function g : Rn → Rn is defined as

g (v)i ,
evi∑n

j=1 e
v j for i = 1, ...,n.

15The cross-entropy of two probability distributions P and P∗ is defined as H(P,P∗) = EP
[− logP∗

]
.

22

 Electronic copy available at: https://ssrn.com/abstract=3452933

APPENDIX B

If the price process is represented by the jump-diffusion model (3.1), then the realized variation
is defined as

RV2
t+1(∆),

1/∆∑
j=1

r 2
∆,t+ j ·∆→

∫ t+1

t
σ2

s d s + ∑
t<s≤t+1

Y 2
s (B.1)

where ∆ corresponds to the chosen frequency and r∆,t+ j ·∆ is the j th log-return within day t .
The realized variance converges (in probability) to the total variance composed by two terms.
The first one being the continuous variance (generated by the diffusion term of the stochastic
process) while the second is the jump variance.

In order to estimate only the integrated volatility, Ole E Barndorff-Nielsen and Shephard
(2004) introduced the realized bipower variation which is defined as

BPV2
t+1(∆), (π/2)−2

1/∆∑
j=2

|r∆,t+ j ·∆||r∆,t+(j−1)·∆|→
∫ t+1

t
σ2

s d s. (B.2)

BPV is a consistent estimator of integrated volatility in the presence of jumps. It is therefore
useful to create a jump test.

23

 Electronic copy available at: https://ssrn.com/abstract=3452933

